Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IJID Reg ; 10: 94-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38179416

RESUMO

Objectives: A leading cause of morbidity and mortality in Southeast Asia, the epidemiological data on melioidosis disease occurrence and mortality in Malaysia is not comprehensive. The aim of this study is to determine the burden of melioidosis and assess the National Surveillance for Antibiotic Resistance (NSAR) data as a potential tool melioidosis surveilance in Malaysia. Methods: We performed a retrospective analysis on the B. pseudomallei reposited data submitted to the NSAR network between January 2014 and December 2020. The data were screened for information on patient demographics and specimen types. Additional patient comorbidities and outcomes were drawn from parallel surveillance for bacteremic melioidosis. Results: The average annual incidence rate of melioidosis between 2014-2020 was 3.41 per 100,000 population and was significantly different between states (P <0.001). The highest incidence was observed in Pahang at 11.33 per 100,000 population. Individuals of Malay ethnicity, from the states of Pahang, Johor, Perak, and Negeri Sembilan aged 40-49, who were diabetic and working in agriculture-related sectors had a higher risk of succumbing to the infection. Conclusion: Assessing the NSAR data proved to be a useful tool for the determination of the incidence and socio-demographic risk factors attributed to melioidosis in Malaysia.

2.
Microbiol Spectr ; 10(3): e0269421, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467407

RESUMO

The indiscriminate use and overuse of various antibiotics have caused the rapid emergence of antibiotic-resistant bacteria (ARB) in poultry products and the surrounding environment, giving rise to global public health issues. This study aimed to determine the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) found in the environment of poultry farms and to evaluate the risk of contamination in these farms based on multiple antibiotic resistance (MAR) index values. Soil and effluent samples were collected from 13 poultry farms. The VITEK 2 system was used for bacterial identification and susceptibility testing of the isolates. The identified Gram-negative isolates were Acinetobacter spp., Aeromonas spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Providencia spp., Pseudomonas spp., and Sphingomonas paucimobilis. The results showed that Enterobacter spp., Aeromonas spp., and Providencia spp. exhibited the highest MDR rates and MAR indices; 14% of K. pneumoniae isolates (3/21 isolates) were resistant to 13 antibiotics and found to be extended-spectrum ß-lactamase (ESBL)-producing bacteria. As for the tested antibiotics, 96.6% of the isolates (28/29 isolates) demonstrated resistance to ampicillin, followed by ampicillin-sulbactam (55.9% [33/59 isolates]) and cefazolin (54.8% [57/104 isolates]). The high percentage of MDR bacteria and the presence of ESBL-producing K. pneumoniae strains suggested the presence of MDR genes from the poultry farm environment, which poses an alarming threat to the effectiveness of the available antibiotic medicines to treat infectious diseases. Therefore, the use of antibiotics should be regulated and controlled, while studies addressing One Health issues are vital for combating and preventing the development and spread of ARB. IMPORTANCE The occurrence and spread of ARB due to high demand in poultry industries are of great public health concern. The widespread emergence of antibiotic resistance, particularly MDR among bacterial pathogens, poses challenges in clinical treatment. Some pathogens are now virtually untreatable with current antibiotics. However, those pathogens were rarely explored in the environment. In alignment with the concept of One Health, it is imperative to study the rate of resistance in the environment, because this domain plays an important role in the dissemination of bacteria to humans, animals, and other environmental areas. Reliable data on the prevalence of MDR bacteria are crucial to curb the spread of bacterial pathogens that can cause antimicrobial-resistant infections.


Assuntos
Bactérias Gram-Negativas , Klebsiella pneumoniae , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana Múltipla/genética , Fazendas , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , Aves Domésticas , beta-Lactamases/genética
3.
Am J Trop Med Hyg ; 104(4): 1388-1393, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33617472

RESUMO

Sarcocystosis outbreaks in Tioman and Pangkor islands of Malaysia between 2011 and 2014 have raised the need to improve Sarcocystis species detection from environmental samples. In-house works found that published primers amplifying the 18S rRNA gene of Sarcocystis either could not produce the target from environmental samples or produced Sarcocystis DNA sequence that was insufficient for species identification. Using the primer pair of 18S S5 F (published) and 28S R6 R (new), this study improved the PCR amplification of Sarcocystidae to overcome these two difficulties. The PCR product spanned from the 18S to 28S rRNA genes, providing more information for species identification. The long DNA sequence allowed comparison between the "Ident" and "Query Cover" sorting in GenBank identity matching. This revealed the ambiguity in identity matching caused by different lengths of reference DNA sequences, which is seldom discussed in the literature. Using the disparity index test, a measurement of homogeneity in nucleotide substitution pattern, it is shown that the internal transcribed spacer (ITS)1-5.8S-ITS2 and 28S genes are better than the 18S gene in indicating nucleotide variations, implying better potentials for species identification. The example given by the handful of Sarcocystidae long DNA sequences reported herein calls for the need to report DNA sequence from the 18S to the 28S rRNA genes for species identification, especially among emerging pathogens. DNA sequence reporting should include the hypervariable 5.8S and ITS2 regions where applicable, and not be limited to single gene, per the current general trend.


Assuntos
Sequência de Bases/genética , DNA de Protozoário/genética , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Sarcocystidae/genética , Sarcocistose/diagnóstico , Variação Genética , Humanos , Malásia , Filogenia , Sarcocystidae/classificação , Sarcocistose/parasitologia , Sensibilidade e Especificidade , Análise de Sequência de DNA , Microbiologia do Solo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...